Multi-disciplinary Design Optimization of a Composite Car Door for Structural Performance, Nvh, Crashworthiness, Durability and Manufacturability

نویسندگان

  • M. Grujicic
  • F. Y. Koçer
چکیده

Among various efforts pursued to produce fuel efficient vehicles, light weight engineering (i.e. the use of low-density structurally-efficient materials, the application of advanced manufacturing and joining technologies and the design of highly-integrated, multi-functional components/sub-assemblies) plays a prominent role. In the present work, a multi-disciplinary design optimization methodology has been presented and subsequently applied to the development of a light composite vehicle door (more specifically, to an inner door panel). The door design has been optimized with respect to its weight while meeting the requirements /constraints pertaining to the structural and NVH performances, crashworthiness, durability and manufacturability. In the optimization procedure, the number and orientation of the composite plies, the local laminate thickness and the shape of different door panel segments (each characterized by a given composite-lay-up architecture and uniform ply thicknesses) are used as design variables. The methodology developed in the present work is subsequently used to carry out weight optimization of the front door on Ford Taurus, model year 2001. The emphasis in the present work is placed on highlighting the scientific and engineering issues accompanying multidisciplinary design optimization and less on the outcome of the optimization analysis and the computational resources/architecture needed to support such activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective design optimization for crash safety of a vehicle with a viscoelastic body and wide tapered multi-cell energy absorber using DOE method

Due to the extensive use of cars and progresses in the vehicular industries, it has become necessary to design vehicles with higher levels of safety standards. Development of the computer aided design and analysis techniques has enabled employing well-developed commercial finite-element-based crash simulation computer codes, in recent years. The present study is an attempt to optimize behavi...

متن کامل

Numerical and Experimental Investigation of the Effect of Different Orientation Angles on Crash Behavior of Composite Hat Shape Energy Absorber

Car body lightening and crashworthiness are two important objectives of car design. Due to their excellent performance, composite materials are extensively used in the car industries. In addition, reducing the weight of vehicle is effective in decreasing the fuel consumption. Hat shape energy absorber is used in car’s doors for side impact protection. The aim of these numerical models and expe...

متن کامل

Optimization foam filled thin-walled structures for the crashworthiness capability: Review

In automotive industry, foam-filled structures have aroused increasing interest because of lightweight and capacity of energy absorption. Two types of foam filled thin walled structures such as the uniform foam filled (UF) and the functionally graded foam (FGF). To improve crashworthiness performance, FGF are used to fill structures, unlike existing uniform foam materials. In addition, by seeki...

متن کامل

Stainless steel automotive and transport developments

Stainless is now a candidate for structural applications. Offering weight savings, enhanced “crashworthiness” and corrosion resistance, it can also be recycled. The material blends tough mechanical and fire-resistant properties with excellent manufacturability. Under impact, high-strength stainless offers excellent energy absorption in relation to strain rate. It is ideal for the revolutionary ...

متن کامل

Crashworthiness design of multi-cell tapered tubes using response surface methodology

In this article, crashworthiness performance and crushing behavior of tapered structures with four internal reinforcing plates under axial and oblique dynamic loadings have been investigated. These structures have a tapered form with five cross sections of square, hexagonal, octagonal, decagon and circular shape. In the first step, finite element simulations performed in LS-DYNA were validated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008